Main Page | See live article | Alphabetical index

# Sophie Germain prime

A prime number p is called a Sophie Germain prime if 2p+1 is also prime. They acquired significance because of Sophie Germain's proof that Fermat's last theorem is true for such primes. It is conjectured that there are infinitely many Sophie Germain primes, but like the Twin prime conjecture, this has not been proven. There are 190 Sophie Germain primes in the interval [1, 104] (SIDN A005384):

```   2,    3,    5,   11,   23,   29,   41,   53,   83,   89,  113,  131,
173,  179,  191,  233,  239,  251,  281,  293,  359,  419,  431,  443,
491,  509,  593,  641,  653,  659,  683,  719,  743,  761,  809,  911,
953, 1013, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1439, 1451,
1481, 1499, 1511, 1559, 1583, 1601, 1733, 1811, 1889, 1901, 1931, 1973,
2003, 2039, 2063, 2069, 2129, 2141, 2273, 2339, 2351, 2393, 2399, 2459,
2543, 2549, 2693, 2699, 2741, 2753, 2819, 2903, 2939, 2963, 2969, 3023,
3299, 3329, 3359, 3389, 3413, 3449, 3491, 3539, 3593, 3623, 3761, 3779,
3803, 3821, 3851, 3863, 3911, 4019, 4073, 4211, 4271, 4349, 4373, 4391,
4409, 4481, 4733, 4793, 4871, 4919, 4943, 5003, 5039, 5051, 5081, 5171,
5231, 5279, 5303, 5333, 5399, 5441, 5501, 5639, 5711, 5741, 5849, 5903,
6053, 6101, 6113, 6131, 6173, 6263, 6269, 6323, 6329, 6449, 6491, 6521,
6551, 6563, 6581, 6761, 6899, 6983, 7043, 7079, 7103, 7121, 7151, 7193,
7211, 7349, 7433, 7541, 7643, 7649, 7691, 7823, 7841, 7883, 7901, 8069,
8093, 8111, 8243, 8273, 8513, 8663, 8693, 8741, 8951, 8969, 9029, 9059,
9221, 9293, 9371, 9419, 9473, 9479, 9539, 9629, 9689, 9791
```
A heuristic estimate for the number of Sophie Germain primes less than x is 2C2 x / (ln x)2 where C2 is the twin prime constant, approximately 0.660161. For x=104, this estimate predicts 156 Sophie Germain primes, which has a 20% error compared to the exact value of 190 above. (For x=107, the estimate predicts 50822, whichs is still 10% off from the exact value of 56032.)

A sequence {p, 2p+1, 2(2p+1)+1, ...} of Sophie Germain primes is called a Cunningham chain of the first kind.