A prime number *p* is called a **Sophie Germain prime** if 2*p*+1 is also prime. They acquired significance because of Sophie Germain's proof that Fermat's last theorem is true for such primes. It is conjectured that there are infinitely many Sophie Germain primes, but like the Twin prime conjecture, this has not been proven. There are 190 Sophie Germain primes in the interval [1, 10^{4}] (SIDN A005384):

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1439, 1451, 1481, 1499, 1511, 1559, 1583, 1601, 1733, 1811, 1889, 1901, 1931, 1973, 2003, 2039, 2063, 2069, 2129, 2141, 2273, 2339, 2351, 2393, 2399, 2459, 2543, 2549, 2693, 2699, 2741, 2753, 2819, 2903, 2939, 2963, 2969, 3023, 3299, 3329, 3359, 3389, 3413, 3449, 3491, 3539, 3593, 3623, 3761, 3779, 3803, 3821, 3851, 3863, 3911, 4019, 4073, 4211, 4271, 4349, 4373, 4391, 4409, 4481, 4733, 4793, 4871, 4919, 4943, 5003, 5039, 5051, 5081, 5171, 5231, 5279, 5303, 5333, 5399, 5441, 5501, 5639, 5711, 5741, 5849, 5903, 6053, 6101, 6113, 6131, 6173, 6263, 6269, 6323, 6329, 6449, 6491, 6521, 6551, 6563, 6581, 6761, 6899, 6983, 7043, 7079, 7103, 7121, 7151, 7193, 7211, 7349, 7433, 7541, 7643, 7649, 7691, 7823, 7841, 7883, 7901, 8069, 8093, 8111, 8243, 8273, 8513, 8663, 8693, 8741, 8951, 8969, 9029, 9059, 9221, 9293, 9371, 9419, 9473, 9479, 9539, 9629, 9689, 9791A heuristic estimate for the number of Sophie Germain primes less than

A sequence {*p*, 2*p*+1, 2(2*p*+1)+1, ...} of Sophie Germain primes is called a Cunningham chain of the first kind.