Main Page | See live article | Alphabetical index

Hausdorff dimension

The Hausdorff dimension (also: Hausdorff-Besicovitch dimension, capacity dimension and fractal dimension), introduced by Felix Hausdorff, gives a way to accurately measure the dimension of complicated sets such as fractals. The Hausdorff dimension agrees with the ordinary (topological) dimension on "well-behaved sets", but it is applicable to many more sets and is not always a natural number. The Hausdorff dimension should not be confused with the (similar) box-counting dimension.

If M is a metric space, and d > 0 is a real number, then the d-dimensional Hausdorff measure Hd(M) is defined to be the infimum of all m > 0 such that for all r > 0, M can be covered by countably many closed sets of diameter < r and the sum of the d-th powers of these diameters is less than or equal to m.

It turns out that for most values of d, this measure Hd(M) is either 0 or ∞. If d is smaller than the "true dimension" of M, then Hd(M) = ∞; if it is bigger then Hd(M) = 0.

The Hausdorff dimension d(M) is then defined to be the "cutoff point", i.e. the infimum of all d > 0 such that Hd(M) = 0. The Hausdorff dimension is a well-defined real number for any metric space M and we always have 0 ≤ d(M) ≤ ∞.