Main Page | See live article | Alphabetical index


Combinations are studied in combinatorics: let S be a set; the combinations of this set are its subsets. A k-combination is a subset of S with k elements. The order of listing the elements is not important in combinations: two lists with the same elements in different orders are considered to be the same combination. The number of k-combinations of set with n elements is the binomial coefficient "n choose k", written as nCk, nCk or as
or occasionally as C(n, k).

One method of deriving a formula for nCk proceeds as follows:

  1. Count the number of ways in which one can make an ordered list of k different elements from the set of n. This is equivalent to calculating the number of k-permutations.
  2. Recognizing that we have listed every subset many times, we correct the calculation by dividing by the number of different lists containing the same k elements:

(see factorial), we find

It is useful to note that C(n, k) can also be found using Pascal's triangle, as explained in the binomial coefficient article.