Main Page | See live article | Alphabetical index

Andreini tessellation

The Andreini tessellations are tilings of three-dimensional space using Platonic and Archimedean solids such that all vertices are identical. They are special case of uniform tessellation .

There are 28 such tessellations. See B. Grünbaum, Uniform tilings of 3-space. Geombinatorics 4(1994), 49 - 56.

The tiling of octahedra and tetrahedra is of special importance since its vertices form a cubic close-packing of spheres. All of these are found in crystal arrangements.

Some important examples are:

External Links